ECG Visualization and Navigation Sunics in Electrocardiology

Diego Tognola

Sunics Research Laboratory Pty. Ltd.

April 20, 2008

Diego Tognola (Sunics)

ECG Visualization and Navigation

▶ ◀ 클 ▶ 클 ∽ ९. April 20, 2008 1 / 19

イロト イポト イヨト イヨト

SURICS

Technology

Part I

Technology

Diego Tognola (Sunics)

2 / 19

臣

sunics

590

- modelling and visualization of cyclic data
- compact, lossless representation of long data sequences
- reveals change of waveform morphology over time
- decouples waveform and frequency
- normalizes waveform to allow comparison.

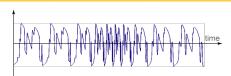
- ∢ /⊐ ►

- modelling and visualization of cyclic data
- compact, lossless representation of long data sequences
- reveals change of waveform morphology over time
- decouples waveform and frequency
- normalizes waveform to allow comparison.

- modelling and visualization of cyclic data
- compact, lossless representation of long data sequences
- reveals change of waveform morphology over time
- decouples waveform and frequency
- normalizes waveform to allow comparison.

- modelling and visualization of cyclic data
- compact, lossless representation of long data sequences
- reveals change of waveform morphology over time
- decouples waveform and frequency
- normalizes waveform to allow comparison.

- modelling and visualization of cyclic data
- compact, lossless representation of long data sequences
- · reveals change of waveform morphology over time
- decouples waveform and frequency
- normalizes waveform to allow comparison.


- modelling and visualization of cyclic data
- compact, lossless representation of long data sequences
- · reveals change of waveform morphology over time
- decouples waveform and frequency
- normalizes waveform to allow comparison.

- modelling and visualization of cyclic data
- compact, lossless representation of long data sequences
- · reveals change of waveform morphology over time
- · decouples waveform and frequency
- normalizes waveform to allow comparison.

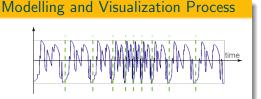
So how are cyclic data sequences modelled and visualized ?

SUDIC

Modelling and Visualization Process

Given a data sequence with varying cycle lengths

Segmentation of data into cycles

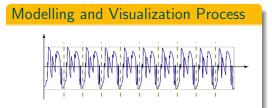

Normalization of cycles to segments of equal length

Rearrangement of segments based on time of occurence

Completion to 2D surface, colour coding of data values

Projection to coloured 2D representation

SUDIC


Segmentation of data into cycles

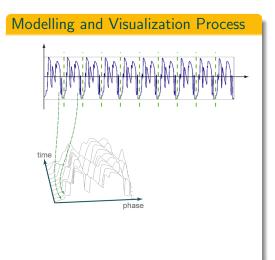
Normalization of cycles to segments of equal length

Rearrangement of segments based on time of occurence

Completion to 2D surface, colour coding of data values

Projection to coloured 2D representation

Segmentation of data into cycles

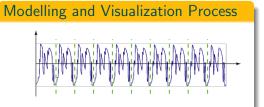

Normalization of cycles to segments of equal length

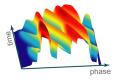
Rearrangement of segments based on time of occurence

Completion to 2D surface, colour coding of data values

Projection to coloured 2D representation

SUDIC

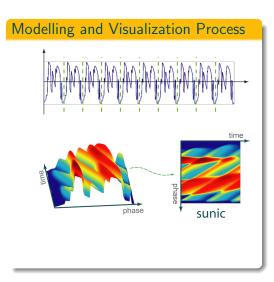

Segmentation of data into cycles


Normalization of cycles to segments of equal length

Rearrangement of segments based on time of occurence

Completion to 2D surface, colour coding of data values

Projection to coloured 2D representation


Segmentation of data into cycles

Normalization of cycles to segments of equal length

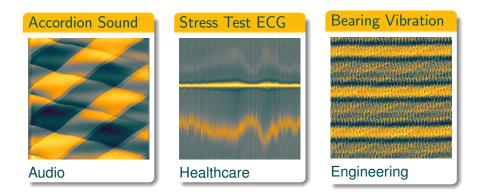
Rearrangement of segments based on time of occurence

Completion to 2D surface, colour coding of data values

Projection to coloured 2D representation

Segmentation of data into cycles

Normalization of cycles to segments of equal length

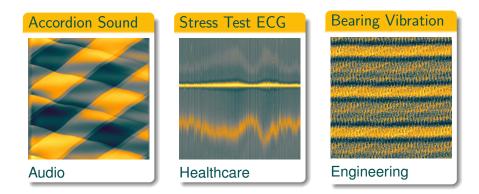

Rearrangement of segments based on time of occurence

Completion to 2D surface, colour coding of data values

Projection to coloured 2D representation

echnology	Examples

This process is applicable to many fields



3 April 20, 2008 6 / 19

イロト イヨト イヨト イヨト

SURICS

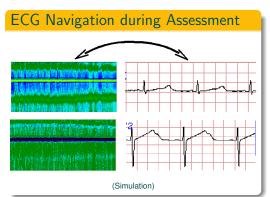
DQC

So let's explore the application to ECGs further ...

April 20, 2008 6 / 19

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

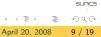
SURICS

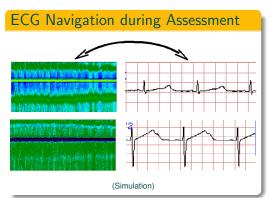

DQC

Part II

Application to Electrocardiography

Applied to ECG data, Sunics improves and simplifies

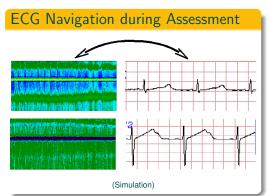

assessment and management processes...



Detail: ECG strip (right) shows a few seconds, used for assessment

Combination of displays allows for quick detection in overview and assessment via strip

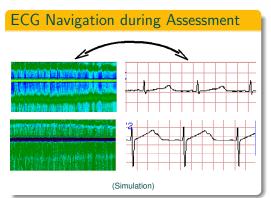
Linking both displays provides a powerful, bi–directional navigation tool for assessment processes.



Detail: ECG strip (right) shows a few seconds, used for assessment

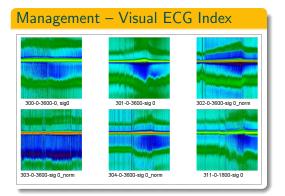
Combination of displays allows for quick detection in overview and assessment via strip

Linking both displays provides a powerful, bi–directional navigation tool for assessment processes.



Detail: ECG strip (right) shows a few seconds, used for assessment

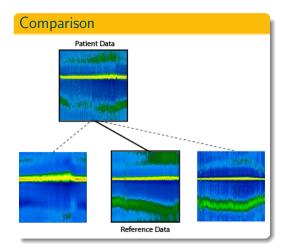
Combination of displays allows for quick detection in overview and assessment via strip


Linking both displays provides a powerful, bi–directional navigation tool for assessment processes.

Detail: ECG strip (right) shows a few seconds, used for assessment

Combination of displays allows for quick detection in overview and assessment via strip

Linking both displays provides a powerful, bi–directional navigation tool for assessment processes.



Thumbnail icons allow for easy access to recordings managed in patient databases.

April 20, 2008 10 / 19

イロト イポト イヨト イヨト

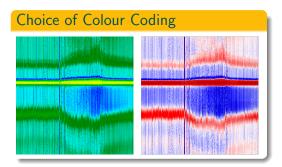
Surfics

Sunics allow for direct comparison of wave morphology, delivering a good base for automated processing.

Diego Tognola (Sunics)

ECG Visualization and Navigation

April 20, 2008 11 / 19

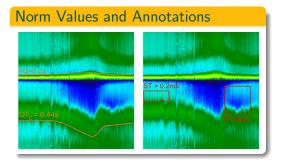

 $\exists \rightarrow$

3 ►

Image: A matrix

Surfics

There are many ways to enhance or customize visualizations...



A selection of colour codings can be used to suit user preferences.

Diego Tognola (Sunics)

50000 2000

Clinical norm values and annotations can be overlayed, e.g.

- curves corresponding to PQ = 0.2s, $QT_c = 0.44s$
- regions where ST > 0.2mV
- regions with ST down slope.

SUDIC

Features and Benefits

Part III

Features and Benefits

Related Technology

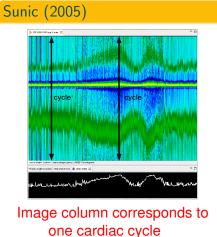
- There are similar visualization techniques for ECGs
- ... the most similar being the Contourogram (G. N. Webb, 1964)
- How does this compare to Sunics ?

- ∢ /⊐) >

SURICS

Related Technology

- There are similar visualization techniques for ECGs
- ... the most similar being the Contourogram (G. N. Webb, 1964)
- How does this compare to Sunics ?


Related Technology

- There are similar visualization techniques for ECGs
- ... the most similar being the Contourogram (G. N. Webb, 1964)
- How does this compare to Sunics ?

Contourogram 12

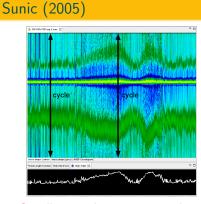
Contourogram (1964)

1000ms

Image column corresponds to fixed time window

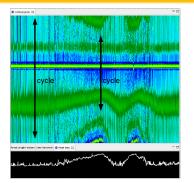
· < /⊒ ► < ∃ ►

1000ms


Interpretation of image columns

D:	T	· (C)	
Diego	Tognol	a (Si	inics)

ECG Visualization and Navigation

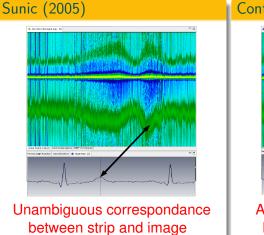

April 20, 2008 17 / 19

SUMO

Cardiac cycle corresponds to image column, immediately recognizable

Contourogram (1964)

Cardiac cycle only recognizable via interpretation of image features

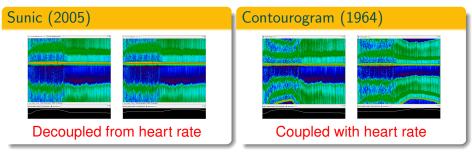

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Recognizing cardiac cycle start and end


Diego Tognola (Sunics)

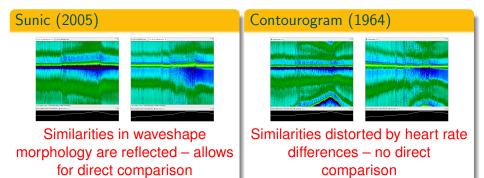
April 20, 2008 17 / 19

SUNC


Contourogram (1964)

Ambiguous correspondance between strip and image

Navigating between strip and image


April 20, 2008 17 / 19

Relation between wave morphology and heart rate

Simulation shows two recordings with equal morphology but different heart rate

SUDIC

Manual or automated comparison of wave morphology

Simulation shows two recordings with similar morpholog but different heart rate

SUMO

Applied to ECGs, Sunics provides:

- Navigational overview for assessment of long term ECG
- Visual index for managed ECG data
- Base for automated comparison or assessment of long term ECG.

∃ ⊳

- ∢ ⊢⊒ ト

SURICS

Applied to ECGs, Sunics provides:

- Navigational overview for assessment of long term ECG
- Visual index for managed ECG data
- Base for automated comparison or assessment of long term ECG.

∃ ► < ∃ ►</p>

- ∢ /⊐ ト

Applied to ECGs, Sunics provides:

- Navigational overview for assessment of long term ECG
- Visual index for managed ECG data
- Base for automated comparison or assessment of long term ECG.

 $\exists \rightarrow$

∃ >

< f□

Applied to ECGs, Sunics provides:

- Navigational overview for assessment of long term ECG
- Visual index for managed ECG data
- Base for automated comparison or assessment of long term ECG.

イロト イポト イヨト イヨト

Thank You

For more information, please visit http://www.sunics.com

<ロ> (日) (日) (日) (日) (日)

sunics

DQC